Hypomorphic variants in the SEL1L-HRD1 ER-associated degradation (ERAD) complex have been linked to severe neurological syndromes in children, including neurodevelopmental delay, intellectual disability, motor dysfunction, and early death. Despite this association, its physiological importance and underlying mechanisms in neurons remain poorly understood. Here, we show that neuronal SEL1L-HRD1 ERAD is essential for maintaining one-carbon metabolism, motor function, and overall viability. Neuron-specific deletion of Sel1L in mice (Sel1L (SynCre) ) resulted in growth retardation, severe motor impairments, and early mortality by 9 weeks of age-mirroring core clinical features observed in affected patients-despite preserved neuronal numbers and only modest ER stress. Multi-omics analyses, including single-nucleus RNA sequencing and metabolomics, revealed significant dysregulation of one-carbon metabolism in ERAD-deficient brains. This included activation of the serine, folate, and methionine pathways, accompanied by elevated levels of S-adenosylmethionine and related metabolites, likely resulted from induction of the integrated stress response (ISR). Together, these findings uncover a previously unappreciated role for neuronal SEL1L-HRD1 ERAD in coordinating ER protein quality control with metabolic adaptation, providing new insight into the molecular basis of ERAD-related neurodevelopmental disease.
Neuronal SEL1L-HRD1 ERAD regulates one-carbon metabolism and is essential for motor function and survival.
神经元 SEL1L-HRD1 ERAD 调节一碳代谢,对运动功能和生存至关重要
阅读:5
作者:Torres Mauricio, Lu You, Pederson Brent, Wang Hui, Gretzinger Anna, Lin Liangguang Leo, Hwang Jiwon, Rupp Alan, Tomlinson Abigail, Scott Andrew J, Zhao Zhen, Wahl Daniel R, Myers Martin, Lyssiotis Costas A, Qi Ling
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 18 |
| doi: | 10.1101/2025.06.16.659938 | 研究方向: | 代谢、神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
