Porosity-Limited Transport during Two-Phase Surfactant/Polymer Floods in a Layered Sandstone.

阅读:4
作者:Rovelli Andrea, Kurotori Takeshi, Brodie James, Rashid Bilal, Tay Weparn J, Pini Ronny
Surfactant/polymer flooding presents itself as an attractive technique for the full utilization of current reservoirs given its potential to yield high oil recoveries. Despite this appeal, discrepancies between laboratory and field results exist and limit their industrial implementation. Within the scale-up process, corefloods serve as a key tool for the evaluation of the recovery potential; however, due to complexities in the fluid system itself, these are commonly performed on homogeneous core samples. To further understand this, we conduct a surfactant/polymer flood as a tertiary recovery method within a Nugget sandstone core. A notable feature of the chosen core is its stratified nature, with layers of high and low porosity characterized via X-ray CT. Via the use of direct imaging, coupled with a step tracer test, preferential flow paths and slow-to-ingress regions of the core are identified, information that is then coupled with the surfactant/polymer flood results to better understand the mechanisms at play. To better understand the influence of the structured heterogeneity present within the core, the results are compared to an analogous experiment within a homogeneous sandstone core. We note the inability of an oil bank to form and the comparatively larger variability of the recoveries between different porosity layers within the core. Lastly, we highlight how, despite a high overall recovery of 80%, inefficiencies in the displacement process are still present and only observable due to the direct imaging methodology implemented, ultimately showcasing its value in this context.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。