Rice diseases pose a severe threat to global food security, while traditional detection methods suffer from low efficiency and dependence on manual expertise. To address the challenges of insufficient feature extraction and poor multi-scale disease adaptability in existing deep learning approaches under complex field environments, this study proposes ADAM-DETR, a rice disease detection algorithm based on improved RT-DETR. We constructed the RiDDET-5 dataset containing 9,303 images covering five major disease categories. The algorithm innovatively designs three core modules: the AdaptiveVision Network (AVN) backbone for enhanced feature extraction, the Dual-Domain Enhanced Transformer (DDET) module for spatiotemporal-frequency domain collaboration, and the Adaptive Multi-scale Feature Model (AMFM) for improved feature fusion. Experimental results demonstrate that ADAM-DETR achieves 94.76% mAP@50 on the RiDDET-5 dataset, representing a 3.25% improvement over the baseline, and 83.32% mAP@50 on the public Kamatis dataset with a 2.19% enhancement, validating its cross-domain generalization capability. The algorithm requires only 42.8G FLOPs with 14.3M parameters, achieving an optimal balance between accuracy and efficiency, providing an effective technical solution for disease monitoring in smart agriculture.
ADAM-DETR: an intelligent rice disease detection method based on adaptive multi-scale feature fusion.
阅读:16
作者:Song Hanyu, Huang Xinyue, Wang Ziqiang, Hu Jianwei, Zhang Huasheng, Yang Hui
| 期刊: | Plant Methods | 影响因子: | 4.400 |
| 时间: | 2025 | 起止号: | 2025 Aug 8; 21(1):108 |
| doi: | 10.1186/s13007-025-01429-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
