Pyrite morphology and sulfur isotopes refine taphonomic models for the 2.1 Ga Francevillian biota, Gabon.

阅读:4
作者:El Khoury Anna, Saleh Farid, El Albani Abderrazak, Fontaine Claude, Rollion-Bard Claire, Chraiki Ibtissam, Aubineau Jérémie, Ngwal'ghoubou Ikouanga Julie, Bhilisse Mohamed, Zguaid Maryem, Somogyi Andrea, Chi Fru Ernest
Pyritization is a key taphonomic process that preserves some of Earth's oldest fossils. It is influenced by various factors such as organic matter type, the availability of iron and sulfur, and sedimentation rates. In this study, we analyzed pyritized biotic and abiotic structures from 2.1 Ga deposits in Gabon's Francevillian Basin, to reconstruct their taphonomic pathway at the micron scale. Using secondary ion mass spectrometry and scanning electron microscopy, we examine sulfur isotope compositions, pyrite morphology and grain size within individual fossils and compare them to abiotic pyritic concretions from the same stratigraphic level. Our results reveal differences in pyrite grain size and sulfur isotope composition between fossils and concretions. More importantly, chemical and morphological variations are observed within individual fossils, likely due to distinct reactive environments for pyrite mineralization, linked to organic matter, sulfate and iron availability during early diagenesis. This remarkable variation in pyrite morphology and δ(34)S values in the fossilized specimens, indicates that they were compositionally more complex than the substrate that formed the homogeneously pyritized concretions. This well-preserved ecological window represents an exceptional record of the earliest multicellular life forms on Earth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。