Sufficient principal component regression for pattern discovery in transcriptomic data.

阅读:3
作者:Ding Lei, Zentner Gabriel E, McDonald Daniel J
MOTIVATION: Methods for the global measurement of transcript abundance such as microarrays and RNA-Seq generate datasets in which the number of measured features far exceeds the number of observations. Extracting biologically meaningful and experimentally tractable insights from such data therefore requires high-dimensional prediction. Existing sparse linear approaches to this challenge have been stunningly successful, but some important issues remain. These methods can fail to select the correct features, predict poorly relative to non-sparse alternatives or ignore any unknown grouping structures for the features. RESULTS: We propose a method called SuffPCR that yields improved predictions in high-dimensional tasks including regression and classification, especially in the typical context of omics with correlated features. SuffPCR first estimates sparse principal components and then estimates a linear model on the recovered subspace. Because the estimated subspace is sparse in the features, the resulting predictions will depend on only a small subset of genes. SuffPCR works well on a variety of simulated and experimental transcriptomic data, performing nearly optimally when the model assumptions are satisfied. We also demonstrate near-optimal theoretical guarantees. AVAILABILITY AND IMPLEMENTATION: Code and raw data are freely available at https://github.com/dajmcdon/suffpcr. Package documentation may be viewed at https://dajmcdon.github.io/suffpcr. CONTACT: daniel@stat.ubc.ca. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。