Differential impacts of germline and adult aggrecan knockout in PV+ neurons on perineuronal nets and PV+ neuronal function.

阅读:17
作者:Grødem Sverre, Thompson Elise Holter, Røe Malin Benum, Vatne Guro Helen, Nymoen Nystuen Ingeborg, Buccino Alessio, Otterstad Tarjei, Hafting Torkel, Fyhn Marianne, Lensjø Kristian Kinden
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism. The formation of PNNs is highly dependent on aggrecan, a proteoglycan encoded by the ACAN gene, but it remains unknown if it is produced by the PV+ neurons themselves. Thus, we established a knockout (KO) mouse model (ACANflx/PVcre) and an adeno-associated virus to specifically eliminate aggrecan production from PV+ neurons, in the germline or adult animals, respectively. The germline KO (ACANflx/PVcre) eliminated the expression of PNNs labeled by Wisteria floribunda agglutinin (WFA), the most commonly used PNN marker. Surprisingly, electrophysiological properties of PV+ interneurons and ocular dominance plasticity of adult ACANflx/PVcre mice were similar to controls. In contrast, AAV-mediated ACAN knockout in adult mice increased ocular dominance plasticity. Moreover, in vivo Chondroitinase ABC treatment of KO mice resulted in reduced firing rate of PV+ cells and increased frequency of spontaneous excitatory postsynaptic currents (sEPSC), a phenotype associated with chABC treatment of WT animals. These findings suggest that compensatory mechanisms may be activated during development in response to the germline loss of aggrecan. Indeed, qPCR of bulk tissue indicates that other PNN components, including neurocan and tenascin-R, are expressed at higher levels in the KO animals. Finally, behavioral testing revealed that ACANflx/PVcre mice had similar long-term memory as controls in the Morris water maze. However, they employed bolder search strategies during spatial learning and showed lower level of anxiety-related behavior in an open field and zero maze.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。