T-bet's ability to regulate individual target genes requires the conserved T-box domain to recruit histone methyltransferase activity and a separate family member-specific transactivation domain.

阅读:4
作者:Lewis Megan D, Miller Sara A, Miazgowicz Michael M, Beima Kristin M, Weinmann Amy S
Appropriate cellular differentiation and specification rely upon the ability of key developmental transcription factors to precisely establish gene expression patterns. These transcription factors often regulate epigenetic events. However, it has been unclear whether this is the only role that they play in functionally regulating developmental gene expression pathways or whether they also participate in downstream transactivation events at the same promoter. The T-box transcription factor family is important in cellular specification events in many developmental systems, and determining the molecular mechanisms by which this family regulates gene expression networks warrants attention. Here, we examine the mechanism by which T-bet, a critical T-box protein in the immune system, influences transcription. T-bet is both necessary and sufficient to induce permissive histone H3-K4 dimethyl modifications at the CXCR3 and IFN-gamma promoters. A T-bet structure-function analysis revealed that the conserved T-box domain, with a small C-terminal portion, is required for recruiting histone methyltransferase activity to promoters. Interestingly, this function is conserved in the T-box family and is necessary, but not sufficient, to induce transcription, with an independent transactivation activity also required. The requirement for two separable functional activities may ultimately contribute to the stringent role for T-box proteins in establishing specific developmental gene expression pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。