The proliferation of Internet of Things (IoT) devices has created unprecedented cybersecurity vulnerabilities, with botnets emerging as a critical threat to network infrastructure. This study focuses on traditional machine learning and deep learning approaches, proposes a novel ensemble framework to address these issues, integrating Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), Random Forest (RF), and Logistic Regression (LR) via a weighted soft-voting mechanism. Our approach introduces a Quantile Uniform transformation to reduce feature skewness, a multi-layered feature selection method to enhance discriminative power, an individual performance of deep learning-traditional machine learning and a hybrid models (ensemble models) for robust detection. Evaluated on BOT-IOT, CICIOT2023, and IOT23 datasets, the framework achieves 100% accuracy on BOT-IOT, 99.2% on CICIOT2023, and 91.5% on IOT23, outperforming state-of-the-art models by up to 6.2%. These contributions advance IoT security by enabling scalable, high-performance detection adaptable to diverse network scenarios, with practical optimizations for real-world deployment.
Comparative analysis of deep learning and traditional methods for IoT botnet detection using a multi-model framework across diverse datasets.
阅读:3
作者:Ullah Saeed, Wu Junsheng, Lin Zhijun, Kamal Mian Muhammad, Mostafa Hala, Sheraz Muhammad, Chuah Teong Chee
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 23; 15(1):31072 |
| doi: | 10.1038/s41598-025-16553-w | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
