The alpha complex is a fundamental data structure from computational geometry, which encodes the topological type of a union of balls B(x; r) â Rm for x â S , including a weighted version that allows for varying radii. It consists of the collection of "simplices" Ï = {x0, ..., xk} â S , which correspond to nonempty (k + 1) -fold intersections of cells in a radius-restricted version of the Voronoi diagram Vor (S, r) . Existing algorithms for computing the alpha complex require that the points reside in low dimension because they begin by computing the entire Delaunay complex, which rapidly becomes intractable, even when the alpha complex is of a reasonable size. This paper presents a method for computing the alpha complex without computing the full Delaunay triangulation by applying Lagrangian duality, specifically an algorithm based on dual quadratic programming that seeks to rule simplices out rather than ruling them in.
Computing the alpha complex using dual active set quadratic programming.
阅读:4
作者:Carlsson Erik, Carlsson John
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Aug 27; 14(1):19824 |
| doi: | 10.1038/s41598-024-63971-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
