Parkinson's disease is a progressive neurodegenerative disorder caused by dopaminergic neuron degeneration. Parkinsonian speech impairment is one of the earliest presentations of the disease and, along with tremor, is suitable for pre-diagnosis. It is defined by hypokinetic dysarthria and accounts for respiratory, phonatory, articulatory, and prosodic manifestations. The topic of this article targets artificial-intelligence-based identification of Parkinson's disease from continuous speech recorded in a noisy environment. The novelty of this work is twofold. First, the proposed assessment workflow performed speech analysis on samples of continuous speech. Second, we analyzed and quantified Wiener filter applicability for speech denoising in the context of Parkinsonian speech identification. We argue that the Parkinsonian features of loudness, intonation, phonation, prosody, and articulation are contained in the speech, speech energy, and Mel spectrograms. Thus, the proposed workflow follows a feature-based speech assessment to determine the feature variation ranges, followed by speech classification using convolutional neural networks. We report the best classification accuracies of 96% on speech energy, 93% on speech, and 92% on Mel spectrograms. We conclude that the Wiener filter improves both feature-based analysis and convolutional-neural-network-based classification performances.
CNN-Based Identification of Parkinson's Disease from Continuous Speech in Noisy Environments.
阅读:3
作者:Faragó Paul, ÈtefÄnigÄ Sebastian-Aurelian, CordoÈ Claudia-Georgiana, MihÄilÄ Laura-Ioana, Hintea Sorin, PeÈtean Ana-Sorina, Beyer Michel, Perju-DumbravÄ LÄcrÄmioara, IleÈan Robert Radu
| 期刊: | Bioengineering-Basel | 影响因子: | 3.800 |
| 时间: | 2023 | 起止号: | 2023 Apr 26; 10(5):531 |
| doi: | 10.3390/bioengineering10050531 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
