Diagnostic Value of Deep Learning-Based CT Feature for Severe Pulmonary Infection.

阅读:9
作者:Huang Tinglong, Zheng Xuelan, He Lisui, Chen Zhiliang
The study aimed to explore the diagnostic value of computed tomography (CT) images based on cavity convolution U-Net algorithm for patients with severe pulmonary infection. A new lung CT image segmentation algorithm (U-Net+ deep convolution (DC)) was proposed based on U-Net network and compared with convolutional neural network (CNN) algorithm. Then, it was applied to CT image diagnosis of 100 patients with severe lung infection in The Second Affiliated Hospital of Fujian Medical University hospital and compared with traditional methods, and its sensitivity, specificity, and accuracy were compared. It was found that the single training time and loss of U-Net + DC algorithm were reduced by 59.4% and 9.8%, respectively, compared with CNN algorithm, while Dice increased by 3.6%. The lung contour segmented by the proposed model was smooth, which was the closest to the gold standard. Fungal infection, bacterial infection, viral infection, tuberculosis infection, and mixed infection accounted for 28%, 18%, 7%, 7%, and 40%, respectively. 36%, 38%, 26%, 17%, and 20% of the patients had ground-glass shadow, solid shadow, nodule or mass shadow, reticular or linear shadow, and hollow shadow in CT, respectively. The incidence of various CT characteristics in patients with fungal and bacterial infections was statistically significant (P < 0.05). The specificity (94.32%) and accuracy (97.22%) of CT image diagnosis based on U-Net + DC algorithm were significantly higher than traditional diagnostic method (75.74% and 74.23%), and the differences were statistically significant (P < 0.05). The network of the algorithm in this study demonstrated excellent image segmentation effect. The CT image based on the U-Net + DC algorithm can be used for the diagnosis of patients with severe pulmonary infection, with high diagnostic value.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。