Reinforcement of Calcareous Sands by Stimulation of Native Microorganisms Induced Mineralization.

阅读:4
作者:Shen Gangqiang, Liu Shiyu, He Yuhan, Pan Muzhi, Yu Jin, Cai Yanyan
Calcareous sand is a special soil formed by the accumulation of carbonate fragments. Its compressibility is caused by a high void ratio and breakable particles. Because of its high carbonate content and weak cementation, its load-bearing capacity is limited. In this study, the optimal stimulation solution was obtained with response surface methodology. Then, the effect of reinforcing calcareous sand was analysed with unconfined compressive strength (UCS) tests, calcium carbonate content tests, microscopy and microbial community analyses. The components and concentrations of the optimal stimulation solution were as follows: sodium acetate (38.00 mM), ammonium chloride (124.24 mM), yeast extract (0.46 g/L), urea (333 mM), and nickel chloride (0.01 mM), and the pH was 8.75. After the calcareous sand was treated with the optimal stimulation scheme, the urease activity was 6.1891 mM urea/min, the calcium carbonate production was 8.40%, and the UCS was 770 kPa, which constituted increases of 71.41%, 35.40%, and 83.33%, respectively, compared with the initial scheme. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses showed that calcium carbonate crystals were formed between the particles of the calcareous sand after the reaction, and the calcium carbonate crystals were mainly calcite. Urease-producing microorganisms became the dominant species in calcareous sand after treatment. This study showed that biostimulation-induced mineralization is feasible for reinforcing calcareous sand.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。