Study on the potential diagnostic value of metabolomics changes in different biological fluids for aspiration pneumonia.

阅读:8
作者:Chen Lianghui, Chen Yazhen, Lin Fansen, Wang Jianbao, Gao Hongzhi, Liu Yuqi
BACKGROUND: Aspiration pneumonia (AP) is a type of lung inflammation caused by the aspiration of food, oropharyngeal secretions, or gastric contents. This condition is particularly common in older adults and individuals with impaired swallowing or consciousness. While the diagnosis of AP relies on clinical history, swallowing assessments, and imaging, these methods have significant limitations, often leading to underdiagnosis or misdiagnosis. Reliable biomarkers for AP diagnosis are lacking, making early detection and treatment challenging. METHODS: Nineteen patients diagnosed with pneumonia were included in this study, divided into two groups: AP (n = 10) and non-AP (n = 9). Biological fluid samples, including bronchoalveolar lavage fluid (BALF), saliva, serum, sputum, and urine, were analyzed using non-targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS). Differential metabolites were identified using fold change analysis, statistical significance, and receiver operating characteristic (ROC) curve analysis to evaluate their diagnostic potential. Spearman correlation was used to examine the relationship between selected metabolites and clinical parameters. RESULTS: Significant metabolic differences were found between AP and non-AP patients, with many different metabolites identified across biological fluids. Dehydroepiandrosterone sulfate (DHEAS), Androstenediol-3-sulfate (ADIOLS), and beta-muricholic acid were identified as key biomarkers through fold change analysis and ROC curve analysis, showing consistent increasing or decreasing trends in BALF, sputum, and serum samples. DHEAS was found to be negatively correlated with the Acute Physiology and Chronic Health Evaluation II (APACHE II) (r = - 0.619, p = 0.005) in BALF sample. The area under curve (AUC) values showed that these molecules could serve as effective biomarkers for AP. CONCLUSIONS: This study identifies DHEAS, ADIOLS and beta-muricholic acid as promising biomarkers for AP, with the potential to improve early diagnosis and treatment. These findings underscore the clinical value of metabolomics in developing diagnostic tools for AP, facilitating better clinical management and patient outcomes. Further research is required to validate these biomarkers in larger cohorts and explore their mechanistic roles in AP pathophysiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。