Actively Tunable "Single Peak/Broadband" Absorbent, Highly Sensitive Terahertz Smart Device Based on VO(2).

阅读:11
作者:Fan Baodian, Tang Hao, Wu Pinghui, Qiu Yu, Jiang Linqin, Lin Lingyan, Su Jianzhi, Zhou Bomeng, Pan Miao
In recent years, the development of terahertz (THz) technology has attracted significant attention. Various tunable devices for THz waves (0.1 THz-10 THz) have been proposed, including devices that modulate the amplitude, polarization, phase, and absorption. Traditional metal materials are often faced with the problem of non-adjustment, so the designed terahertz devices play a single role and do not have multiple uses, which greatly limits their development. As an excellent phase change material, VO(2)'s properties can be transformed by external temperature stimulation, which provides new inspiration for the development of terahertz devices. To address these issues, this study innovatively combines metamaterials with phase change materials, leveraging their design flexibility and temperature-induced phase transition characteristics. We have designed a THz intelligent absorber that not only enables flexible switching between multiple functionalities but also achieves precise performance tuning through temperature stimulation. Furthermore, we have taken into consideration factors such as the polarization mode, environmental temperature, structural parameters, and incident angle, ensuring the device's process tolerance and environmental adaptability. Additionally, by exploiting the principle of localized surface plasmon resonance (LSPR) accompanied by local field enhancement, we have monitored and analyzed the resonant process through electric field characterization. In summary, the innovative approach and superior performance of this structure provide broader insights and methods for THz device design, contributing to its theoretical research value. Moreover, the proposed absorber holds potential for practical applications in electromagnetic invisibility, shielding, modulation, and detection scenarios.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。