Nowadays, conductive hydrogels show significant prospects as strain sensors due to their good stretchability and signal transduction abilities. However, traditional hydrogels possess poor anti-freezing performance at low temperatures owing to the large number of water molecules, which limits their application scope. To date, constructing a hydrogel-based sensor with balanced stretchability, conductivity, transparency, and anti-freezing properties via simple methods has proven challenging. Here, a fully physically crosslinked poly(hydroxyethyl acrylamide)-glycerol-sodium chloride (PHEAA-Gl-NaCl) hydrogel was obtained by polymerizing hydroxyethyl acrylamide in deionized water and then soaking it in a saturated NaCl solution of glycerol and water. The PHEAA-Gl-NaCl hydrogel had good transparency (~93%), stretchability (~1300%), and fracture stress (~287 kPa). Owing to the presence of glycerol and sodium chloride, the PHEAA-Gl-NaCl hydrogel had good anti-freezing properties and conductivity. Furthermore, the PHEAA-Gl-NaCl hydrogel-based strain sensor possessed good sensitivity and cyclic stability, enabling the detection of different human motions stably and in a wide temperature range. Based on the above characteristics, the PHEAA-Gl-NaCl hydrogel has broad application prospects in flexible electronic materials.
Fully Physically Crosslinked Hydrogel with Ultrastretchability, Transparency, and Freezing-Tolerant Properties for Strain Sensor.
阅读:4
作者:Shang Pengbo, Ji Yang, Ji Feng
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2024 | 起止号: | 2024 Oct 18; 17(20):5102 |
| doi: | 10.3390/ma17205102 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
