Degradation kinetics of Andrographolide in aqueous solution, product identification and biological activity evaluation.

阅读:5
作者:Jaidee Wuttichai, Rujanapun Narawadee, Malee Kulawadee, Chaisawadi Suchada, Puttarak Panupong, Hiransai Poonsit, Cordell Geoffrey A, Sarker Satyajit D, Nahar Lutfun, Charoensup Rawiwan
Andrographolide (1) is a labdane-type diterpene lactone and the major bioactive metabolite (2.39%) in the leaves of Andrographis paniculata (Acanthaceae). To further explore its stability, the thermal degradation kinetics of compound 1 at pH 2.0, pH 6.0, and pH 8.0 were modeled at three temperatures within 50-85 °C. The activation energy (E(a)), shelf-life (t(90%)), and rate constant (k) for compound 1 were determined using the Arrhenius equation. Consequently, the results indicated that degradation followed first-order kinetics, and the optimum pH for stability was determined to be between pH 2.0 and 4.0. Major degradation products formed under pH 2.0 and pH 6.0 conditions were isolated and spectroscopically characterized by comparison with known compounds. Under pH 2.0 conditions, two degradation products were identified: isoandrographolide (2) and 8,9-didehydroandrographolide (3). Under pH 6.0 conditions, three degradation products were formed: 15-seco-andrographolide (4), 14-deoxy-15-methoxyandrographolide (5), and 11,14-dehydro-14-deoxyandrographolide (6). Anti-inflammatory and cytotoxicity assessments demonstrated reduced biological effects for the degradation products compared with compound 1. This highlights the importance of controlling pH during formulation to ensure product stability, sustained bioactivity, and patient benefit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。