Nanowelding of two crossing amorphous SiO (x) nanowires induced by uniform electron beam irradiation at room temperature was demonstrated in an in situ transmission electron microscope. It was observed that, under the electron beam irradiation, the amorphous nanowires became unstable driven by nanocurvature non-uniformly distributed over the nanowire surface centered around the crossing site of the nanowires. Such an instability of the nanowires could give rise to an athermal fast and massive migration of atoms nearby the surface centered around the crossing site, and thus the two crossing nanowires become gradually welded. The existing knock-on mechanism and molecular dynamics simulations seem inadequate to explain the observed athermal migration of the surface atoms and the resulting structural change at the nanoscale. To elucidate the observed phenomena of nanowelding, a mechanism of athermal atomic diffusion driven by the effects of the nanocurvature as well as the athermal activation of the electron beam was proposed and simulated. The simulation revealed the detailed process of the nanowelding and corresponding effects of the nanocurvature and athermal activation of the electron beam. In doing so, the nanowelding parameters became predictable, controllable, and tunable to a desired welding effect.
Electron beam-induced athermal nanowelding of crossing SiO (x) amorphous nanowires.
阅读:3
作者:Zheng Yuchen, Cheng Liang, Su Jiangbin, Chen Chuncai, Zhu Xianfang, Li Hang
| 期刊: | RSC Advances | 影响因子: | 4.600 |
| 时间: | 2022 | 起止号: | 2022 Feb 21; 12(10):6018-6024 |
| doi: | 10.1039/d1ra08176d | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
