Boosting flexible laser-induced graphene supercapacitors performance through double pass laser processing.

阅读:4
作者:Hamada Assia, Ryu Yu Kyoung, Velasco Andres, Gómez-Mancebo María Belén, Fernández Carretero Sergio, Calle Fernando, Martinez Javier
This study proposes a simple and cost-effective approach to enhance the performance of supercapacitors based on laser-induced graphene (LIG). The use of two consecutive laser passes using the same CO(2) engraver on polyimide film led to the expansion in the size of the pores, the increase in the graphitization degree, and the densification of the produced material. These changes in the morphology and chemical structure of the LIG impacted positively its electrochemical performance when it was used as an electrode for supercapacitors. The best achieved material displayed the following results: (a) an enhancement of the areal energy density from 0.77 to 2.20 μWh/cm(2) at 0.05 mA/cm(2), (b) a reduction of 60% in the equivalent series resistance, (c) high cycling stability with a capacitance retention rate of 91% after 10.000 cycles, (d) high performance stability under mechanical tests at different angles, and (e) green LED illumination under configuration in series.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。