Influence of Transfer Entropy in the Short-Term Prediction of Financial Time Series Using an ∊-Machine.

阅读:3
作者:Zavala-Díaz José Crispín, Pérez-Ortega Joaquín, Almanza-Ortega Nelva Nely, Pazos-Rangel Rodolfo, Rodríguez-Lelís José María
Predicting the values of a financial time series is mainly a function of its price history, which depends on several factors, internal and external. With this history, it is possible to build an ∊-machine for predicting the financial time series. This work proposes considering the influence of a financial series through the transfer of entropy when the values of the other financial series are known. A method is proposed that considers the transfer of entropy for breaking the ties that occur when calculating the prediction with the ∊-machine. This analysis is carried out using data from six financial series: two American, the S&P 500 and the Nasdaq; two Asian, the Hang Seng and the Nikkei 225; and two European, the CAC 40 and the DAX. This work shows that it is possible to influence the prediction of the closing value of a series if the value of the influencing series is known. This work showed that the series that transfer the most information through entropy transfer are the American S&P 500 and Nasdaq, followed by the European DAX and CAC 40, and finally the Asian Nikkei 225 and Hang Seng.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。