Elastocapillary sequential fluid capture in hummingbird-inspired grooved sheets.

阅读:1
作者:Siéfert Emmanuel, Scheid Benoit, Brau Fabian, Cappello Jean
Passive and effective fluid capture and transport at small scale is crucial for industrial and medical applications, especially for the realisation of point-of-care tests. Performing these tests involves several steps, including capturing biological fluid, aliquoting, reacting with reagents, and reading the results. Ideally, these tests must be fast and offer a large surface-to-volume ratio to achieve rapid and precise diagnostics with a reduced amount of fluid. Such constraints are often contradictory as a high surface-to-volume ratio implies a high hydraulic resistance and hence a decrease in the flow rate. Inspired by the feeding mechanism of hummingbirds, we propose a frugal fluid capture device that takes advantage of elastocapillary deformations to enable concomitant fast liquid transport, aliquoting, and high confinement in the deformed state. The hierarchical design of the device - that consists in vertical grooves stacked on an elastic sheet - enables a two-step sequential fluid capture. Each unit groove mimics the hummingbird's tongue and closes due to capillary forces when a wetting liquid penetrates, yielding the closure of the whole device in a tubular shape, in the core of which additional liquid is captured. Combining elasticity, capillarity, and viscous flow, we rationalise the fluid-structure interaction at play both when liquid is scarce and abundant. By functionalising the surface of the grooves, such a passive device can concomitantly achieve all the steps of point-of-care tests, opening the way for the design of optimal devices for fluid capture and transport in microfluidics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。