Detecting cassava leaf disease is challenging because it is hard to identify diseases accurately through visual inspection. Even trained agricultural experts may struggle to diagnose the disease correctly which leads to potential misjudgements. Traditional methods to diagnose these diseases are time-consuming, prone to error, and require expert knowledge, making automated solutions highly preferred. This paper explores the application of advanced deep learning techniques to detect as well as classify cassava leaf diseases which includes EfficientNet models, DenseNet169, Xception, MobileNetV2, ResNet models, Vgg19, InceptionV3, and InceptionResNetV2. A dataset consisting of around 36,000 labelled images of cassava leaves, afflicted by diseases such as Cassava Brown Streak Disease, Cassava Mosaic Disease, Cassava Green Mottle, Cassava Bacterial Blight, and healthy leaves, was used to train these models. Further the images were pre-processed by converting them into grayscale, reducing noise using Gaussian filter, obtaining the region of interest using Otsu binarization, Distance transformation, as well as Watershed technique followed by employing contour-based feature selection to enhance model performance. Models, after fine-tuned with ADAM optimizer computed that among the tested models, the hybrid model (DenseNet169â+âEfficientNetB0) had superior performance with classification accuracy of 89.94% while as EfficientNetB0 had the highest values of precision, recall, and F1score with 0.78 each. The novelty of the hybrid model lies in its ability to combine DenseNet169's feature reuse capability with EfficientNetB0's computational efficiency, resulting in improved accuracy and scalability. These results highlight the potential of deep learning for accurate and scalable cassava leaf disease diagnosis, laying the foundation for automated plant disease monitoring systems.
A hybrid deep learning model approach for automated detection and classification of cassava leaf diseases.
阅读:3
作者:Sambasivam G, Prabu Kanna G, Chauhan Munesh Singh, Raja Prem, Kumar Yogesh
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 27; 15(1):7009 |
| doi: | 10.1038/s41598-025-90646-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
