Nucleobase deaminases are important players in maintaining a stringent nucleobase pool and enhancing genetic diversity via judicious base editing. Here, we delineate the mechanism of Mycobacterium smegmatis deaminase, Msd, found predominantly in Mycobacterium species, that selectively catalyzes the deamination of mutagenic bases. Molecular dynamic studies reveal the dynamic nature of unique structural insertions that cycle between 'closed' and 'open' states, enabling zinc-assisted deamination by occluding the solvent. Corroborating X-ray crystallographic and biochemical studies assert that the appropriate length of the two gating loops and proper positioning of the di-proline motif they harbor are paramount to effective closure. Analysis reveals that although both natural base deaminases, guanine and cytosine deaminase, operate via a similar gating mechanism to Msd, they employ topologically differentially placed structural elements to achieve the 'closed' form. The comparison shows that Mycobacterium deaminases lack the dual-proton shuttle, which renders them ineffective for the deamination of natural bases but allows them to selectively target mutagenic s-triazine scaffolds, thereby imparting innate immunity against these drugs. The study highlights how topologically unique insertions in the cytidine deaminase fold play a critical role in harnessing evolutionary versatility, responsible in imparting fidelity for a nucleobase deamination reaction.
Mechanism of deamination by mycobacterial deaminase selectively targeting mutagenic bases.
阅读:3
作者:Porathoor Sini, Choudhury Asha Rani, Chakrabarti Rajarshi, Anand Ruchi
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 20; 53(6):gkaf171 |
| doi: | 10.1093/nar/gkaf171 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
