BACKGROUND: It is well known that more than 90% of cancer deaths are due to metastases. However, the entire tumorigenesis process is not fully understood, and it is evident that cells spreading from the primary tumor play a key role in initiating the metastatic process. Tumor proliferation and invasion also elevate the concentration of regular and irregular metabolites in the serum, which may alter the normal function of the entire human homeostasis and possibly causes cancer metabolism syndrome, also referred to as cachexia. METHODS: We report on the modification of commercially available hemodialysis membranes to selectively capture circulating tumor cells from the blood stream by means of immobilized human anti-EpCAM antibodies on the inner surface of the fibers. All critical steps are described that required in situ addition of the immuno-affinity feature to hemodialyzer cartridges in order to capture EpCAM positive circulating tumor cells, which represents ~80% of cancer cell types. RESULTS: The cell capture efficiency of the suggested technology was demonstrated by spiking HCT116 cancer cells both into buffer solution and whole blood and run through on the modified cartridge. Flow cytometry was used to quantitatively evaluate the cell clearance performance of the approach. CONCLUSIONS: The suggested modification has no significant effect on the porous structure of the hemodialysis membranes; it keeps its cytokine removal capability, addressing cachexia simultaneously with CTC removal.
Modification of Hemodialysis Membranes for Efficient Circulating Tumor Cell Capture for Cancer Therapy.
阅读:3
作者:Jarvas Gabor, Szerenyi Dora, Tovari Jozsef, Takacs Laszlo, Guttman Andras
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2021 | 起止号: | 2021 Aug 10; 26(16):4845 |
| doi: | 10.3390/molecules26164845 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
