Glycolysis model shows that allostery maintains high ATP and limits accumulation of intermediates.

阅读:7
作者:Choe Mangyu, Einav Tal, Phillips Rob, Titov Denis V
Glycolysis is a conserved metabolic pathway that produces ATP and biosynthetic precursors. It is not well understood how the control of mammalian glycolytic enzymes through allosteric feedback and mass action accomplishes various tasks of ATP homeostasis, such as controlling the rate of ATP production, maintaining high and stable ATP levels, ensuring that ATP hydrolysis generates a net excess of energy, and maintaining glycolytic intermediate concentrations within physiological levels. To investigate these questions, we developed a biophysical model of glycolysis based on enzyme rate equations derived from in vitro kinetic data. This is the first biophysical model of human glycolysis that successfully recapitulates the above tasks of ATP homeostasis and predicts absolute concentrations of glycolytic intermediates and isotope tracing kinetics that align with experimental measurements in human cells. We use the model to show that mass action alone is sufficient to control the ATP production rate and maintain the high energy of ATP hydrolysis. Meanwhile, allosteric regulation of hexokinase and phosphofructokinase by ATP, ADP, inorganic phosphate, and glucose-6-phosphate is required to maintain high ATP levels and to prevent uncontrolled accumulation of phosphorylated intermediates of glycolysis. Allosteric feedback achieves the latter by maintaining hexokinase and phosphofructokinase enzyme activity at one-half of ATP demand and, thus, inhibiting the reaction of Harden and Young, which otherwise converts glucose to supraphysiological levels of phosphorylated glycolytic intermediates at the expense of ATP. Our methodology provides a roadmap for a quantitative understanding of how metabolic homeostasis emerges from the activities of individual enzymes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。