Exploring the potential of saponins as adjuvants in lipid-nanoparticle-based mRNA vaccines.

阅读:17
作者:Eygeris Yulia, Jozic Antony, Henderson Michael I, Nelson Dylan, Sahay Gaurav
Saponins are a class of phytocompounds known for their amphiphilic properties. Here, we have evaluated incorporation of 40 saponins into a model lipid nanoparticle (LNP) formulation and evaluated their performance in vitro and in vivo. We reasoned that the surfactant activity of saponins could be beneficial in the context of cell and gene therapy due to the disruption of the intracellular membranes. We established formulation methodology to incorporate saponins into LNPs and measured their endosomal disruption and transfection efficiency with DNA barcode and mRNA cargoes. We identified two saponins-quillaic acid and macranthoidin B-that increase the LNP transfection efficiency and endosomal disruption. Saponin formulations demonstrated cargo-dependent activation of the innate immune system, as measured by the cell-based assays of interferon regulatory factor (IRF) and NF-κB pathway activation. Quillaic acid LNPs resulted in higher titers of anti-OVA IgG2a in the vaccination studies compared to a "naive" LNP control, which suggests a more Th1-biased immunopathology of these vaccines. As Th2-biased vaccines can trigger an allergic response, an mRNA vaccine with a balanced Th1/Th2 response is more favorable for translation into the clinic. Overall, quillaic acid may serve as an adjuvant for mRNA vaccines and potentially decrease the risk of vaccine-associated adverse events.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。