Triple-negative breast cancer (TNBC) is a highly invasive cancer, and its poor therapeutic outcomes are often associated with the mechanical properties of the tumor microenvironment, which is characterized by altered extracellular matrix (ECM) flexibility and increased stiffness. Herein, a mechanical immunomodulator, namely, red blood cell membrane-IR780-L-arginine nanoparticles (R-I-LA NPs), was designed to precisely regulate the stiffness of the ECM for mechanical immunotherapy of TNBC. In tumor cells, the low-intensity focused ultrasound activates R-I-LA NPs to produce reactive nitrogen species, which damages tumor cells and remodels the stiffness of ECM. Meanwhile, the softened ECM can normalize the tumor vasculature to alleviate hypoxia and increase the production of reactive oxygen species, thereby enhancing the efficacy of sonodynamic therapy and stimulating immunogenic cell death. Additionally, R-I-LA NPs stimulate the immune system and suppress pulmonary metastasis. Overall, this study offers a distinctive "sono-gas-mediated mechanical immunity" strategy for ECM regulation, potentially overcoming current TNBC therapy limitations.
Sono-Gas-Mediated Precise Stiffness Remodeling for Triple-Negative Breast Cancer Mechanical Immunotherapy.
阅读:15
作者:Hu Yaqin, Cheng Long, Guo Xun, Zheng Min, Zhang Wei, Wang Xingyue, Tang Rui, Chen Qiaoqi, Guo Yuan, Cao Yang, Wang Zhigang, Ran Haitao
| 期刊: | Biomaterials Research | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 May 15; 29:0207 |
| doi: | 10.34133/bmr.0207 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
