Many C4 plants are used as food and fodder crops and often display improved resource use efficiency compared to C3 plants. However, the response of C4 plants to future extreme conditions such as heatwaves is less understood. Here, Setaria viridis, an emerging C4 model grass, was grown under long-term high-temperature stress for 2 wk (42 °C, compared to 28 °C). This resulted in stunted growth, but surprisingly had little impact on leaf thickness, leaf area-based photosynthetic rates, and bundle sheath leakiness. Dark respiration rates increased, and there were major alterations in carbon and nitrogen metabolism in the heat-stressed plants. Abscisic acid and indole-3-acetic acid-amino acid conjugates accumulated in the heat-stressed plants, consistent with transcriptional changes. Leaf transcriptomics, proteomics, and metabolomics analyses were carried out and mapped onto the metabolic pathways of photosynthesis, respiration, carbon/nitrogen metabolism, and phytohormone biosynthesis and signaling. An in-depth analysis of correlations between transcripts and their corresponding proteins revealed strong differences between groups in the strengths and signs of correlations. Overall, many stress signaling pathways were upregulated, consistent with multiple signals leading to reduced plant growth. A systems-based model of the plant response to long-term heat stress is presented based on the oxidative stress, phytohormone, and sugar signaling pathways.
Systems analysis of long-term heat stress responses in the C4 grass Setaria viridis.
阅读:5
作者:Zhang Peng, Sharwood Robert E, Carroll Adam, Estavillo Gonzalo M, von Caemmerer Susanne, Furbank Robert T
| 期刊: | Plant Cell | 影响因子: | 11.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 2; 37(4):koaf005 |
| doi: | 10.1093/plcell/koaf005 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
