A low-order 3-box energy balance model for the climate system is employed with a multivariable control scheme for the evaluation of new robust and adaptive climate engineering strategies using solar radiation management. The climate engineering measures are deployed in three boxes thus representing northern, southern and central bands. It is shown that, through heat transport between the boxes, it is possible to effect a degree of latitudinal control through the reduction of insolation. The approach employed consists of a closed-loop system with an adaptive controller, where the required control intervention is estimated under the RCP4.5 radiative scenario. Through the online estimation of the controller parameters, adaptive control can overcome key issues related to uncertainties of the climate model, the external radiative forcing and the dynamics of the actuator used. In fact, the use of adaptive control offers a robust means of dealing with unforeseeable abrupt perturbations, as well as the parametrization of the model considered, to counteract the RCP4.5 scenario, while still providing bounds on stability and control performance. Moreover, applying multivariable control theory also allows the formal controllability and observability of the system to be investigated in order to identify all feasible control strategies.
Multiple input control strategies for robust and adaptive climate engineering in a low-order 3-box model.
阅读:6
作者:Bonetti F, McInnes C
| 期刊: | Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences | 影响因子: | 3.000 |
| 时间: | 2018 | 起止号: | 2018 Sep;474(2217):20180447 |
| doi: | 10.1098/rspa.2018.0447 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
