Background/Objectives: Cisplatin remains a cornerstone chemotherapeutic agent for non-small-cell lung cancer (NSCLC) treatment, yet its clinical utility is substantially limited by acquired resistance and the inadequate suppression of tumor metastasis. Emerging evidence implicates interleukin 6 (IL-6) as a critical mediator of chemoresistance through cancer stem cell (CSC) enrichment and metastasis promotion via epithelial-mesenchymal transition (EMT) induction, ultimately contributing to cisplatin therapy failure. This study sought to address these challenges by designing a nanoplatform with two innovative aims: (1) to achieve active tumor targeting through binding to the IL-6 receptor (IL-6R), and (2) to concurrently inhibit IL-6-mediated chemoresistance signaling pathways. Methods: A lipid-polymer hybrid nanoparticle (LPC) encapsulating cisplatin was synthesized and subsequently surface-functionalized with tocilizumab (TCZ), a monoclonal antibody that targets IL-6R. The therapeutic efficacy of this TCZ-modified nanoparticle (LPC-TCZ) was assessed through a series of in vitro and in vivo experiments, focusing on the inhibition of EMT, expression of CSC markers, tumor growth, and metastasis. Results: Systematic in vitro and in vivo evaluations revealed that LPC-TCZ synergistically attenuated both EMT progression and CSC marker expression through the targeted blockade of IL-6/STAT3 signaling. This multimodal therapeutic strategy demonstrated superior tumor growth inhibition and metastatic suppression compared to conventional cisplatin monotherapy. Conclusions: Our findings establish a nanotechnology-enabled approach to potentiate cisplatin efficacy by simultaneously countering chemoresistance mechanisms and metastatic pathways in NSCLC management.
Dual-Action Tocilizumab-Conjugated Cisplatin Nanoparticles Overcome Chemoresistance and Metastasis in Non-Small-Cell Lung Cancer.
阅读:6
作者:Wang Yin, Wu Fanyu, Yang Tan, Li Bin, Wang Han, Ye Peng, Li Weijie
| 期刊: | Pharmaceutics | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Jul 21; 17(7):945 |
| doi: | 10.3390/pharmaceutics17070945 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
