Design of acidic activation-responsive charge-switchable carbon dots and validation of their antimicrobial activity.

阅读:4
作者:Li Zhuo, Li Hui, Tang Zhenrong, Tang Qingxia, Liao Chang, Tang Hua, Wang Dan
Bacterial biofilms play a crucial role in the emergence of antibiotic resistance and the persistence of chronic infections. The challenge of effectively eradicating bacterial biofilms while ensuring minimal toxicity to normal cells persists. Carbon-based artificial nanoenzymes have attracted considerable attention as emerging nanotheranostic agents, owing to their biocompatibility, cost-effectiveness, and straightforward synthesis. In this study, we have developed a multifunctional carbon dots (CDs) system, specifically CDs functionalized with 1-(3-aminopropyl) imidazole (API), termed CDs-API. This system demonstrates acid-activated antibiofilm activity. The CDs-API were synthesized from chlorogenic acid (ChA), a bioactive compound naturally occurring in coffee, and subsequently functionalized with API to achieve charge-switchable properties under acidic conditions. This distinctive feature enables CDs-API to efficiently penetrate bacterial biofilms and selectively target the colonized bacteria. The enzyme-like activity of CDs-API effectively consumes high levels of glutathione (GSH) within the biofilm, leading to the accumulation of reactive oxygen species (ROS). Consequently, this process degrades the extracellular polymeric substance (EPS) matrix, damages bacterial DNA and protein structures, and disrupts the redox balance, ultimately leading to bacterial cell death. Experimental results demonstrated that CDs-API effectively inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAE) while promoting wound healing with minimal damage to healthy tissues. The acid-activated charge-switchable capability of CDs-API provides superior antibacterial efficacy compared to traditional antibiotics, rendering it a promising candidate for the treatment of bacterial biofilm infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。