OBJECTIVES: To extract intratumoral, peritumoral, and integrated intratumoral-peritumoral CT radiomic features, develop multi-source radiomic models using various machine learning algorithms to identify the optimal model, and integrate clinical factors to establish a nomogram for predicting the therapeutic response to induction therapy(IT) in locally advanced non-small cell lung cancer. METHODS: This study included 209 patients with locally advanced non-small cell lung cancer (LA-NSCLC) who received IT as the training cohort, and an external validation cohort comprising 50 patients from another center. Radiomic features were extracted from intratumoral, peritumoral, and integrated intratumoral-peritumoral regions by manually delineating the gross tumor volume (GTV) and an additional 3Â mm surrounding area. Three machine learning algorithms-Support Vector Machine (SVM), XGBoost, and Gradient Boosting-were employed to construct radiomic models for each region. Model performance was evaluated in the external validation cohort using metrics such as Area Under the Curve (AUC), confusion matrix, accuracy, precision, recall, and F1 score. Finally, a comprehensive nomogram integrating the optimal radiomic model with independent clinical predictors was developed. RESULTS: Through a comparison of optimal machine learning algorithms, INTRAPERI, INTRA, and PERI achieved the best performance with Gradient Boosting, SVM, and XGBoost, respectively. Compared to the INTRA_SVM and PERI_XGBoost INTRA models, the fusion model that integrates INTRA and peritumoral regions within a 3Â mm margin around the tumor (INTRAPERI_GradientBoosting) showed better predictive performance in the training set, with AUCs of 93.7%, 82.5%, and 89.4%, respectively. In the clinical model, the PS score was identified as an independent predictive factor. The nomogram combining clinical factors with the INTRAPERI_GradientBoosting score demonstrated clinical predictive value. CONCLUSION: The INTRAPERI_GradientBoosting model, which integrates intra-tumoral and peritumoral features, performs better than the INTRA intra-tumoral and PERI peritumoral radiomics models in predicting the efficacy of IT therapy in LA-NSCLC. Additionally, the nomogram based on INTRAPERI intra-tumoral and peritumoral features combined with independent clinical predictors has clinical predictive value.
Integration of intratumoral and peritumoral CT radiomic features with machine learning algorithms for predicting induction therapy response in locally advanced non-small cell lung cancer.
阅读:5
作者:Cai FangHao, Guo Zhengjun, Wang GuoYu, Luo FuPing, Yang Yang, Lv Min, He JiMin, Xiu ZhiGang, Tang Dan, Bao XiaoHui, Zhang XiaoYue, Yang ZhenZhou, Chen Zhi
| 期刊: | BMC Cancer | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Mar 13; 25(1):461 |
| doi: | 10.1186/s12885-025-13804-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
