Background: The mechanical properties of either alveolar bone or periodontal ligaments under orthodontic loading, as well as orthodontic tooth movement, have been studied in recent years using computational approaches. In previous studies, we developed a theoretical mathematical approach that uses a weighting coefficient of the summed resistance of periodontal structures, namely the bone and periodontal ligaments, in relation to apex movement, the center of rotation, orthodontic force loading, and time in order to quantify the biological response to orthodontic biomechanics. Methods: We analyzed the distal retraction of three maxillary canines and integrated the clinical data obtained in the previously developed mathematical programs. Results: The values of the (Ï) weighting coefficient of the tissue resistance were interpreted in the context of the clinical data obtained: the smaller the value of (Ï), the higher the actual tissue resistance, with a greater difference between the crown and root movement; also, the higher the value of (Ï), the lower the actual tissue resistance, with a small difference between the crown and apex movement. Conclusions: The clinical interpretation of the results allows us to set a premise for the refinement of the mathematical programs so that we can use them in assessing the orthodontic biomechanics of larger patient groups over longer periods of time and create premises of treatment protocol simplification and adjustment.
Summed Tissue Resistance of Periodontal Ligaments and Alveolar Bone in Orthodontic Distal Retraction of Maxillary Canines: Mathematical Simulation of Clinical Data and Interpretation of Results.
阅读:6
作者:Bunta Olimpia, Muresan Vlad, Festila Dana, Baciut Mihaela
| 期刊: | Dentistry Journal | 影响因子: | 3.100 |
| 时间: | 2025 | 起止号: | 2025 Jan 27; 13(2):55 |
| doi: | 10.3390/dj13020055 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
