The ability of cells to adapt their mechanical properties to those of the surrounding microenvironment (tensional homeostasis) has been implicated in the progression of a variety of solid tumours, including the brain tumour glioblastoma multiforme (GBM). GBM tumour cells are highly sensitive to extracellular matrix (ECM) stiffness and overexpress a variety of focal adhesion proteins, such as talin. While talin has been shown to play critical early roles in integrin-based force-sensing in non-tumour cells, it remains unclear whether this protein contributes to tensional homeostasis in GBM cells. Here, we investigate the role of the talin isoform talin-1 in enabling human GBM cells to adapt to ECM stiffness. We show that human GBM cells express talin-1, and we use RNA interference to suppress talin-1 expression without affecting levels of talin-2, vinculin or phosphorylated focal adhesion kinase. Knockdown of talin-1 strongly reduces both cell spreading area and random migration speed but does not significantly affect overall focal adhesion size distributions. Most strikingly, atomic force microscopy indentation reveals that talin-1 suppression compromises adaptation of cell stiffness to changes in ECM stiffness. Together, these data support a role for talin-1 in the maintenance of tensional homeostasis in GBM and suggest a functional role for enriched talin expression in this tumour.
Contributions of talin-1 to glioma cell-matrix tensional homeostasis.
阅读:4
作者:Sen Shamik, Ng Win Pin, Kumar Sanjay
| 期刊: | Journal of the Royal Society Interface | 影响因子: | 3.500 |
| 时间: | 2012 | 起止号: | 2012 Jun 7; 9(71):1311-7 |
| doi: | 10.1098/rsif.2011.0567 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
