Target response controlled enzyme activity switch for multimodal biosensing detection.

阅读:4
作者:Zhang Lu, Wu Haiping, Chen Yirong, Zhang Songzhi, Song Mingxuan, Liu Changjin, Li Jia, Cheng Wei, Ding Shijia
How to achieve delicate regulation of enzyme activity and empower it with more roles is the peak in the field of enzyme catalysis research. Traditional proteases or novel nano-enzymes are unable to achieve stimulus-responsive activity modulation due to their own structural limitations. Here, we propose a novel Controllable Enzyme Activity Switch, CEAS, based on hemin aggregation regulation, to deeply explore its regulatory mechanism and develop multimodal biosensing applications. The core of CEAS relies on the dimerizable inactivation of catalytically active center hemin and utilizes a DNA template to orderly guide the G4-Hemin DNAzyme to tightly bind to DNA-Hemin, thereby shutting down the catalytic ability. By customizing the design of the guide template, different target stimulus responses lead to hemin dimerization dissociation and restore the synergistic catalysis of G4-Hemin and DNA-Hemin, thus achieving a target-regulated enzymatic activity switch. Moreover, the programmability of CEAS allowed it easy to couple with a variety of DNA recognition and amplification techniques, thus developing a series of visual protein detection systems and highly sensitive fluorescent detection systems with excellent bioanalytical performance. Therefore, the construction of CEAS is expected to break the limitation of conventional enzymes that cannot be targetable regulated, thus enabling customizable enzymatic reaction systems and providing a new paradigm for controllable enzyme activities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。