Stabilizing large easy-axis type magnetic anisotropy in molecular complexes is a challenging task, yet it is crucial for the development of information storage devices and applications in molecular spintronics. Achieving this requires a deep understanding of electronic structure and the relationships between structure and properties to develop magneto-structural correlations that are currently unexplored in the literature. Herein, a series of five-coordinate distorted square pyramidal Co(II) complexes [Co(L)(X(2))].CHCl(3) (where X = Cl (1), Br (2), or I (3)) is reported, all exhibiting easy-axis magnetic anicotropy. The size of the zero field splitting axial parameter (D) is quantitatively determined (1 = -72; 2 = -67 and 3 = -25 cm(-1)) using a cantilever torque magnetometry which is further firmly supported by magnetic susceptibility, and EPR measurements. The study of the magnetization relaxation dynamics reveals field-induced slow relaxation of magnetization due to the predominant Raman relaxation process. Theoretical calculations on 1-3 and optimized model complexes of 1 reveal insights into the electronic structure and highlight the impact of steric and electronic effects on modulating the D values. Overall, the studies reported pave the way for designing a new generation of Co(II) complexes with enhanced  axiality and a lower rhombicity.
Quantifying Magnetic Anisotropy of Series of Five-Coordinate Co(II) Ions: Experimental and Theoretical Insights.
阅读:3
作者:Thangaraj Vijaya, Sartini Daniele, Borah Dipanti, Chauhan Deepanshu, Sharma Vasudha, Sorace Lorenzo, Rajaraman Gopalan, Perfetti Mauro, Shanmugam Maheswaran
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;12(9):e2415624 |
| doi: | 10.1002/advs.202415624 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
