Wide field-of-view magnetic field microscopy has been realised by probing shifts in optically detected magnetic resonance (ODMR) spectrum of Nitrogen Vacancy (NV) defect centers in diamond. However, these widefield diamond NV magnetometers require few to several minutes of acquisition to get a single magnetic field image, rendering the technique temporally static in it's current form. This limitation prevents application of diamond NV magnetometers to novel imaging of dynamically varying microscale magnetic field processes. Here, we show that the magnetic field imaging frame rate can be significantly enhanced by performing lock-in detection of NV photo-luminescence (PL), simultaneously over multiple pixels of a lock-in camera. A detailed protocol for synchronization of frequency modulated PL of NV centers with fast camera frame demodulation, at few kilohertz frequencies, has been experimentally demonstrated. This experimental technique allows magnetic field imaging of sub-second varying microscale currents in planar microcoils with imaging frame rates in the range of 50-200 frames per s (fps). Our work demonstrates that widefield per-pixel lock-in detection of frequency modulated NV ODMR enables dynamic magnetic field microscopy.
Sub-second temporal magnetic field microscopy using quantum defects in diamond.
阅读:5
作者:Parashar Madhur, Bathla Anuj, Shishir Dasika, Gokhale Alok, Bandyopadhyay Sharba, Saha Kasturi
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2022 | 起止号: | 2022 May 24; 12(1):8743 |
| doi: | 10.1038/s41598-022-12609-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
