A two-dimensional electron gas (2DEG), which has recently been shown to develop in the central vertical plane of a wedge-shaped c-oriented GaN nanowall due to spontaneous polarization effect, offers a unique scenario, where the symmetry between the conduction and valence band is preserved over the entire confining potential. This results in the suppression of Rashba coupling even when the shape of the wedge is not symmetric. Here, for such a 2DEG channel, relaxation time for different spin projections is calculated as a function of donor concentration and gate bias. Our study reveals a strong dependence of the relaxation rate on the spin-orientation and density of carriers in the channel. Most interestingly, relaxation of spin oriented along the direction of confinement has been found to be completely switched off. Upon applying a suitable bias at the gate, the process can be switched on again. Exploiting this fascinating effect, an electrically driven spin-transistor has been proposed.
Spin transport in polarization induced two-dimensional electron gas channel in c-GaN nano-wedges.
阅读:4
作者:Deb Swarup, Dhar Subhabrata
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2021 | 起止号: | 2021 Mar 5; 11(1):5277 |
| doi: | 10.1038/s41598-021-84451-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
