Giant Rashba effect at the topological surface of PrGe revealing antiferromagnetic spintronics.

阅读:3
作者:Banik Soma, Das Pranab Kumar, Bendounan Azzedine, Vobornik Ivana, Arya A, Beaulieu Nathan, Fujii Jun, Thamizhavel A, Sastry P U, Sinha A K, Phase D M, Deb S K
Rashba spin-orbit splitting in the magnetic materials opens up a new perspective in the field of spintronics. Here, we report a giant Rashba spin-orbit splitting on the PrGe [010] surface in the paramagnetic phase with Rashba coefficient α (R)  = 5 eVà . We find that α (R) can be tuned in this system as a function of temperature at different magnetic phases. Rashba type spin polarized surface states originates due to the strong hybridization between Pr 4f states with the conduction electrons. Significant changes observed in the spin polarized surface states across the magnetic transitions are due to the competition between Dzyaloshinsky-Moriya interaction and exchange interaction present in this system. Presence of Dzyaloshinsky-Moriya interaction on the topological surface give rise to Saddle point singularity which leads to electron-like and hole-like Rashba spin split bands in the [Formula: see text] and [Formula: see text] directions, respectively. Supporting evidences of Dzyaloshinsky-Moriya interaction have been obtained as anisotropic magnetoresistance with respect to field direction and first-order type hysteresis in the X-ray diffraction measurements. A giant negative magnetoresistance of 43% in the antiferromagnetic phase and tunable Rashba parameter with temperature makes this material a suitable candidate for application in the antiferromagnetic spintronic devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。