Cervical cancer poses a significant health risk to women. Deep learning methods can assist pathologists in quickly screening images of suspected lesion cells, greatly improving the efficiency of cervical cancer screening and diagnosis. However, existing deep learning methods rely solely on single-scale features and local spatial information, failing to effectively capture the subtle morphological differences between abnormal and normal cervical cells. To tackle this problem effectively, we propose a cervical cell detection method that utilizes multi-scale spatial information. This approach efficiently captures and integrates spatial information at different scales. Firstly, we design the Multi-Scale Spatial Information Augmentation Module (MSA), which captures global spatial information by introducing a multi-scale spatial information extraction branch during the feature extraction stage. Secondly, the Channel Attention Enhanced Module (CAE) is introduced to achieve channel-level weighted processing, dynamically optimizing each output feature using channel weights to focus on critical features. We use Sparse R-CNN as the baseline and integrate MSA and CAE into it. Experiments on the CDetector dataset achieved an Average Precision (AP) of 65.3%, outperforming the state-of-the-art (SOTA) methods.
Detection of cervical cell based on multi-scale spatial information.
阅读:3
作者:Li Gang, Fan Xinyu, Xu Chuanyun, Lv Pengfei, Wang Ru, Ruan Zihan, Zhou Zheng, Zhang Yang
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 24; 15(1):3117 |
| doi: | 10.1038/s41598-025-87165-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
