Lightweight infrared stealth and absorption-dominant electromagnetic interference (EMI) shielding materials are highly desirable in areas of aerospace, weapons, military and wearable electronics. Herein, lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO(2) (SC-CO(2)) foaming combined with hydrogen bonding assembly and compression molding strategy. The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity, and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures. Particularly, the segregated nanocomposite foams present a large radiation temperature reduction of 70.2 °C at the object temperature of 100 °C, and a significantly improved EM wave absorptivity/reflectivity (A/R) ratio of 2.15 at an ultralow Ti(3)C(2)T(x) content of 1.7 vol%. Moreover, the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles. The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace, weapons, military and wearable electronics.
Lightweight Dual-Functional Segregated Nanocomposite Foams for Integrated Infrared Stealth and Absorption-Dominant Electromagnetic Interference Shielding.
阅读:5
作者:Ma Zhonglei, Jiang Ruochu, Jing Jiayao, Kang Songlei, Ma Li, Zhang Kefan, Li Junxian, Zhang Yu, Qin Jianbin, Yun Shuhuan, Zhang Guangcheng
| 期刊: | Nano-Micro Letters | 影响因子: | 36.300 |
| 时间: | 2024 | 起止号: | 2024 Jun 17; 16(1):223 |
| doi: | 10.1007/s40820-024-01450-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
