Here, we present a new approach to reversibly bond microfluidic polydimethylsiloxane (PDMS) channels on low-cost, reproducible, scalable, compact, and ultradense multisensor SU-8-coated chips toward high-throughput electrochemical assays. Based on putting the outlets at the bottom of PDMS, the method only needs manually attaching this substrate on a flat surface, thus offering simplicity, throughput, and reversibility. While a plasma-mediated approach failed to provide leakage-free bonding, the reversibly bonded devices presented a high adhesion strength, withstanding a pressure of at least 5.1 MPa. Because the approach is high-pressure tolerant and reversible, it can deliver both long-term analyses and ease of sampling in-channel material for posterior manipulation/characterization and even sensor regeneration. Importantly, the bonding also delivers long-term shelf life and reusability. Three proof-of-concept applications are presented: (i) the electrodeposition of different nanostructured microelectrodes, followed by their downstream characterization and electrochemical tests, (ii) the long-term proliferation and monitoring of colorectal and breast cancer cells through electrochemical cell adhesion assays, along with the following regeneration of sensors and drug susceptibility testing, and (iii) the electrode fouling-amenable determination of phosphate in synthetic body fluids (urine and saliva) for health assessment purposes. High-throughput assays were provided by the chips from fast analyses in series utilizing a hand-held one-channel potentiostat. For instance, 45 analyses could be completed within â¼135 s. One should also note that the approach is compatible with different materials. Hence, future studies can explore this generalizable dry bonding to produce other microfluidic systems for diverse applications.
Touch-Enabled Reversible Microfluidic Ultradense Chips for Convenient, High-Throughput Electrochemical Assays.
阅读:6
作者:da Silva Pedro H N, Corsato Paula C R, Silva Christian O, Pimentel Gabriel J C, Hryniewicz Bruna M, Bragantin Bruna, Costa Rodrigo S, Shimizu Flávio M, Sousa Ribeiro Iris R, Lima Renato S
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 17(32):45847-45858 |
| doi: | 10.1021/acsami.5c08760 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
