Golden jackal optimization (GJO) is inspired by mundane characteristics and collaborative hunting behaviour, which mimics foraging, trespassing and encompassing, and capturing prey to refresh a jackal's position. However, the GJO has several limitations, such as a slow convergence rate, low computational accuracy, premature convergence, poor solution efficiency, and weak exploration and exploitation. To enhance the global detection ability and solution accuracy, this paper proposes a novel complex-valued encoding golden jackal optimization (CGJO) to achieve function optimization and engineering design. The complex-valued encoding strategy deploys a dual-diploid organization to encode the real and imaginary portions of the golden jackal and converts the dual-dimensional encoding region to the single-dimensional manifestation region, which increases population diversity, restricts search stagnation, expands the exploration area, promotes information exchange, fosters collaboration efficiency and improves convergence accuracy. CGJO not only exhibits strong adaptability and robustness to achieve supplementary advantages and enhance optimization efficiency but also balances global exploration and local exploitation to promote computational precision and determine the best solution. The CEC 2022 test suite and six real-world engineering designs are utilized to evaluate the effectiveness and feasibility of CGJO. CGJO is compared with three categories of existing optimization algorithms: (1) WO, HO, NRBO and BKA are recently published algorithms; (2) SCSO, GJO, RGJO and SGJO are highly cited algorithms; and (3) L-SHADE, LSHADE-EpsSin and CMA-ES are highly performing algorithms. The experimental results reveal that the effectiveness and feasibility of CGJO are superior to those of other algorithms. The CGJO has strong superiority and reliability to achieve a quicker convergence rate, greater computation precision, and greater stability and robustness.
CGJO: a novel complex-valued encoding golden jackal optimization.
阅读:3
作者:Zhang Jinzhong, Zhang Gang, Kong Min, Zhang Tan, Wang Duansong
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Aug 23; 14(1):19577 |
| doi: | 10.1038/s41598-024-70572-7 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
