BACKGROUND: Baylisascaris procyonis is an intestinal ascarid worm that parasitizes in raccoons and causes fatal neural, visceral, and ocular larva migrans in humans. Phosphorylated proteins and protein kinases have been studied as vaccine and drug target candidates against parasitic infections. However, no data are available on protein phosphorylation in the raccoon roundworm. METHODS: In this study, the entire proteome of adult B. procyonis was enzymatically digested. Then, phosphopeptides were enriched using immobilized metal affinity chromatography (IMAC) and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: Our phosphoproteome analysis displayed 854 unique phosphorylation sites mapped to 450 proteins in B. procyonis (3308 phosphopeptides total). The annotated phosphoproteins were associated with various biological processes, including cytoskeletal remodeling, supramolecular complex assembly, and developmental regulation. The phosphopeptide functional enrichment revealed that B. procyonis phosphoproteins were mostly involved in the cytoskeleton cellular compartment, protein binding molecular function, and multiple biological processes, including regulating supramolecular fiber and cytoskeleton organization and assembling cellular protein-containing complexes and organelles. The significantly enriched pathways of phosphoproteins included the insulin signaling pathway, tight junction, endocytosis, longevity-regulating, glycolysis/gluconeogenesis, and apelin signaling pathways. Domain analysis revealed that the Src homology 3 domain was significantly enriched. CONCLUSIONS: This study presents the first phosphoproteomic landscape of B. procyonis, elucidating phosphorylation-mediated regulation of cytoskeletal dynamics, host interaction pathways, and metabolic adaptations. The identified 450 phosphoproteins and enriched functional domains establish a foundation for targeting conserved mechanisms critical to B. procyonis survival.
Protein phosphorylation networks in Baylisascaris procyonis revealed by phosphoproteomic analysis.
阅读:7
作者:Meng Qin, Li Zhikang, Qiu Qiguan, Chen Shuyu, Gong Haiyan, Tan Xiaoruo, Liu Xiaoheng, Chen Zhaoguo, Liu Wei
| 期刊: | Parasites & Vectors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jul 28; 18(1):307 |
| doi: | 10.1186/s13071-025-06949-y | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
