IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function

IL-17/Th17通过调节树突状细胞功能促进1型T细胞免疫抵抗肺部细胞内细菌感染

阅读:9
作者:Hong Bai, Jianjun Cheng, Xiaoling Gao, Antony George Joyee, Yijun Fan, Shuhe Wang, Lei Jiao, Zhi Yao, Xi Yang

Abstract

Although their contribution to host defense against extracellular infections has been well defined, IL-17 and Th17 are generally thought to have limited impact on intracellular infections. In this study, we investigated the role and mechanisms of IL-17/Th17 in host defense against Chlamydia muridarum, an obligate intracellular bacterium, lung infection. Our data showed rapid increase in IL-17 production and expansion of Th17 cells following C. muridarum infection and significant detrimental impact of in vivo IL-17 neutralization by anti-IL-17 mAb on disease course, immune response, and dendritic cell (DC) function. Specifically, IL-17-neutralized mice exhibited significantly greater body weight loss, higher organism growth, and much more severe pathological changes in the lung compared with sham-treated control mice. Immunological analysis showed that IL-17 neutralization significantly reduced Chlamydia-specific Th1 responses, but increased Th2 responses. Interestingly, the DC isolated from IL-17-neutralized mice showed lower CD40 and MHC II expression and IL-12 production, but higher IL-10 production compared with those from sham-treated mice. In two DC-T cell coculture systems, DC isolated from IL-17-neutralized mice induced higher IL-4, but lower IFN-gamma production by Ag-specific T cells than those from sham-treated mice in cell priming and reaction settings. Adoptive transfer of DC isolated from IL-17-neutralized mice, unlike those from sham-treated mice, failed to protect the recipients against challenge infection. These findings provide in vivo evidence that IL-17/Th17 plays an important role in host defense against intracellular bacterial infection, and suggest that IL-17/Th17 can promote type 1 T cell immunity through modulating DC function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。