Cellular Mechanical Phenotypes of Drought-Resistant and Drought-Sensitive Rice Species Distinguished by Double-Resonator Piezoelectric Cytometry Biosensors.

阅读:4
作者:Tang Ding, Zhou Tiean, Pan Weisong, Wang Shimei, Hassan Muhammad Ahmad
Various high-throughput screening methods have been developed to explore plant phenotypes, primarily at the organ and whole plant levels. There is a need to develop phenomics methods at the cellular level to narrow down the genotype to phenotype gap. This study used double-resonator piezoelectric cytometry biosensors to capture the dynamic changes in mechanical phenotypes of living cells of two rice species, drought-resistant Lvhan No. 1 and drought-sensitive 6527, under PEG6000 drought stress. In rice cells of Lvhan No. 1 and 6527, mechanomics parameters, including cell-generated surface stress (ΔS) and viscoelastic parameters (G', G″, G″/G'), were measured and compared under 5-25% PEG6000. Lvhan No. 1 showed larger viscoelastic but smaller surface stress changes with the same concentration of PEG6000. Moreover, Lvhan No. 1 cells showed better wall-plasma membrane-cytoskeleton continuum structure maintaining ability under drought stress, as proven by transient tension stress (ΔS > 0) and linear G'~ΔS, G″~ΔS relations at higher 15-25% PEG6000, but not for 6527 cells. Additionally, two distinct defense and drought resistance mechanisms were identified through dynamic G″/G' responses: (i) transient hardening followed by softening recovery under weak drought, and (ii) transient softening followed by hardening recovery under strong drought. The abilities of Lvhan No. 1 cells to both recover from transient hardening to softening and to recover from transient softening to hardening are better than those of 6527 cells. Overall, the dynamic mechanomics phenotypic patterns (ΔS, G', G″, G″/G', G'~ΔS, G″~ΔS) verified that Lvhan No. 1 has better drought resistance than that of 6527, which is consistent with the field data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。