Natural products (NPs) play a vital role in drug discovery, with many FDA-approved drugs derived from these compounds. Despite their significance, the biosynthetic pathways of NPs remain poorly characterized due to their inherent complexity and the limitations of traditional retrosynthesis methods in predicting such intricate reactions. While template-free machine learning models have demonstrated promise in organic synthesis, their application to biosynthetic pathways is still in its infancy. Addressing this gap, we propose the graph-sequence enhanced transformer (GSETransformer), which leverages both graph structural information and sequential dependencies to achieve superior performance in addressing the complexity of biosynthetic data. When evaluated on benchmark datasets, GSETransformer achieves state-of-the-art performance in single- and multi-step retrosynthesis tasks. These results highlight its effectiveness in computational biosynthesis and its potential to facilitate the design of NP-based therapeutics.
Graph-sequence enhanced transformer for template-free prediction of natural product biosynthesis.
阅读:10
作者:Cong Shan, Zhang Meng, Song Yu, Chang Sihao, Tian Jing, Zeng Hongji, Ji Hongchao
| 期刊: | Patterns | 影响因子: | 7.400 |
| 时间: | 2025 | 起止号: | 2025 Apr 30; 6(8):101259 |
| doi: | 10.1016/j.patter.2025.101259 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
