The hybrid offspring of barbel chub Squaliobarbus curriculus and grass carp Ctenopharyngodon idella exhibit stronger resistance to the grass carp reovirus (GCRV) infection than grass carp. Toll-like receptors (TLRs) play indispensable roles in the antiviral immunity of fish. In this study, the structures and antiviral immune functions of barbel chub TLR19 (ScTLR19) and grass carp TLR19 (CiTLR19) were compared. The amino acid sequence of ScTLR19 shared high similarity (97.4%) and identity (94.0%) with that of CiTLR19, and a phylogenetic tree revealed the close evolutionary relationship between ScTLR19 and CiTLR19. Protein domain composition analyses showed that ScTLR19 possessed an additional leucine-rich repeat (designated as LRR9) located at amino acid positions 654-677 in the extracellular region, which was absent in CiTLR19. Multiple sequence alignment and three-dimensional structure comparison also indicated that the extracellular regions of ScTLR19 and CiTLR19 exhibited greater differences compared to their intracellular regions. Molecular docking revealed that the extracellular region of ScTLR19 (docking score = -512.31) showed a stronger tendency for binding with polyI:C, compared to the extracellular region of CiTLR19 (docking score = -474.90). Replacing LRR9 in ScTLR19 with the corresponding amino acid sequence from CiTLR19 reduced the binding activity of ScTLR19 to polyI:C, as confirmed by an ELISA. Moreover, overexpression experiments suggested that ScTLR19 could regulate both the IRF3-TRIF and IRF3-MyD88 signaling pathways during GCRV infection, while CiTLR19 only regulated the IRF3-MyD88 signaling pathway. Importantly, replacing LRR9 in ScTLR19 with the corresponding amino acid sequence from CiTLR19 altered the expression regulation on IRF3, MyD88, and TRIF during GCRV infection. These findings collectively reveal the structural and functional differences between ScTLR19 and CiTLR19, and they may provide data to support a deeper understanding of the molecular mechanisms underlying the differences in GCRV resistance between barbel chub and grass carp, as well as the genetic basis for the heterosis of GCRV resistance in their hybrid offspring.
Structural and Functional Characteristics of TLR19 in Barbel Chub Compared to TLR19 in Grass Carp.
阅读:6
作者:Lv Zhao, Zhang Mengyuan, Xu Yang, Qin Beibei, Yang Hong, Wei Ruizhong, Xiao Tiaoyi
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 27; 26(7):3103 |
| doi: | 10.3390/ijms26073103 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
