Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae.

阅读:7
作者:Kang Houxiang, Wang Yue, Peng Shasha, Zhang Yanli, Xiao Yinghui, Wang Dan, Qu Shaohong, Li Zhiqiang, Yan Shuangyong, Wang Zhilong, Liu Wende, Ning Yuese, Korniliev Pavel, Leung Hei, Mezey Jason, McCouch Susan R, Wang Guo-Liang
Resistance in rice cultivars to the rice blast fungus Magnaporthe oryzae is complex and is controlled by both major genes and quantitative trait loci (QTLs). We undertook a genome-wide association study (GWAS) using the rice diversity panel 1 (RDP1) that was genotyped using a high-density (700 000 single nucleotide polymorphisms) array and inoculated with five diverse M. oryzae isolates. We identified 97 loci associated with blast resistance (LABRs). Among them, 82 were new regions and 15 co-localized with known blast resistance loci. The top 72 LABRs explained up to 98% of the phenotypic variation. The candidate genes in the LABRs encode nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance proteins, receptor-like protein kinases, transcription factors and defence-related proteins. Among them, LABR_64 was strongly associated with resistance to all five isolates. We analysed the function of candidate genes underlying LABR_64 using RNA interference (RNAi) technology and identified two new resistance alleles at the Pi5 locus. We demonstrate an efficient strategy for rapid allele discovery using the power of GWAS, coupled with RNAi technology, for the dissection of complex blast resistance in rice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。