Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries.

阅读:9
作者:Fu Sha, Xie Xuanzhi, Huangyang Xiaoyi, Yang Longxi, Zeng Xianxiang, Ma Qiang, Wu Xiongwei, Xiao Mingtao, Wu Yuping
High-energy-density lithium metal batteries with high safety and stability are urgently needed. Designing the novel nonflammable electrolytes possessing superior interface compatibility and stability is critical to achieve the stable cycling of battery. Herein, the functional additive dimethyl allyl-phosphate and fluoroethylene carbonate were introduced to triethyl phosphate electrolytes to stabilize the deposition of metallic lithium and accommodate the electrode-electrolyte interface. In comparison with traditional carbonate electrolyte, the designed electrolyte shows high thermostability and inflaming retarding characteristics. Meanwhile, the Li||Li symmetrical batteries with designed phosphonic-based electrolytes exhibit a superior cycling stability of 700 h at the condition of 0.2 mA cm(-2), 0.2 mAh cm(-2). Additionally, the smooth- and dense-deposited morphology was observed on an cycled Li anode surface, demonstrating that the designed electrolytes show better interface compatibility with metallic lithium anodes. The Li||LiNi(0.8)Co(0.1)Mn(0.1)O(2) and Li||LiNi(0.6)Co(0.2)Mn(0.2)O(2) batteries paired with phosphonic-based electrolytes show better cycling stability after 200 and 450 cycles at the rate of 0.2 C, respectively. Our work provides a new way to ameliorate nonflammable electrolytes in advanced energy storage systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。