This paper proposes a novel fractional-order delayed Ross-Macdonald model for malaria transmission. This paper aims to systematically investigate the effect of both the incubation periods of Plasmodium and the order on the dynamic behavior of diseases. Utilizing inequality techniques, contraction mapping theory, fractional linear stability theorem, and bifurcation theory, several sufficient conditions for the existence and uniqueness of solutions, the local stability of the positive equilibrium point, and the existence of fractional-order Hopf bifurcation are obtained under different time delays cases. The results show that time delay can change the stability of system. System becomes unstable and generates a Hopf bifurcation when the delay increases to a certain value. Besides, the value of order influences the stability interval size. Thus, incubation periods and the order have a major effect on the dynamic behavior of the model. The effectiveness of the theoretical results is shown through numerical simulations.
Fractional-order delayed Ross-Macdonald model for malaria transmission.
阅读:11
作者:Cui Xinshu, Xue Dingyu, Li Tingxue
| 期刊: | Nonlinear Dyn | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022;107(3):3155-3173 |
| doi: | 10.1007/s11071-021-07114-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
